|
公司基本資料信息
|
(2)鑄型性質(zhì)的影響 鑄件在鑄型中的凝固是因鑄型吸熱而進(jìn)行的。所以,任何鑄件的
凝固速度都受鑄型吸熱速度的支配。鑄型的吸熱速度越大,則鑄件的凝固速度越大,斷面上
的溫度場的梯度也就越大。鑄型的蓄熱系數(shù) (b2)越大,對鑄件的冷卻能力越強,鑄件中的
溫度梯度就越大。鑄型預(yù)熱溫度越高,冷卻作用就越小,鑄件斷面上的溫度梯度也就越小。
(3)澆注條件的影響 液態(tài)金屬的澆注溫度很少超過液相線以上100℃,因此,金屬由
于過熱所得到的熱量比結(jié)晶潛熱要小得多,一般不大于凝固期間放出的總熱量的5%~6%。
但是,實驗證明,在砂型鑄造中非等到液態(tài)金屬的所有過熱量全部散失。
熔化潛熱使晶粒瓦解,液體原子具有更高
的能量,而金屬的溫度并不升高。從熱力學(xué)角度,在恒壓時,外界所供給的潛熱,除使體積
膨脹做功外,還增加系統(tǒng)的內(nèi)能,如式(11)所示。在等溫等壓下,熵值的增量如式(12)
所示。
系統(tǒng)熵值增加表示原子排列發(fā)生紊亂。因此,熔化過程就是金屬從規(guī)則的原子排列突變
為紊亂的非晶態(tài)結(jié)構(gòu)的過程。
2液態(tài)金屬的結(jié)構(gòu)
(1)從物質(zhì)熔化 (汽化)過程對液態(tài)金屬結(jié)構(gòu)的認(rèn)識 如表11所示,金屬物質(zhì)熔化時
的體積一般僅增加3%~5%,即原子平均間距僅增加1%~15%,熔化時的熵值變化量遠(yuǎn)
小于加熱膨脹過程。
下面以半無限大的鑄件為例,運用導(dǎo)熱微分方程式
求鑄件和鑄型中的溫度場。
假設(shè)具有一個平面的半無限大鑄件在半無限大的鑄
型中冷卻,如圖123所示。鑄件和鑄型的材料是均質(zhì)
12
的,其熱擴散率α1 和α2 近似地為不隨溫度變化的定值,鑄型的初始溫度為t20,并設(shè)液態(tài)金
屬充滿鑄型后立即停止流動,且各處溫度均勻,即鑄件的初始溫度為t10,將坐標(biāo)的原點設(shè)
在鑄件與鑄型的接觸面上。在這種情況下,鑄件和鑄型任意一點的溫度t與y和z無關(guān),為
一維導(dǎo)熱問題。