|
公司基本資料信息
|
三、鑄件溫度場的測定及動態(tài)凝固曲線
鑄件溫度場測定方法的示意圖如圖129所示。將一組熱電偶的熱端固定在型腔中 (如
鑄型中)的不同位置,利用多點自動記錄電子電位計 (或其他自動記錄裝置)作為溫度測量
和記錄裝置,即可記錄自金屬液注入型腔起至任意時刻鑄件斷面上各測溫點的溫度時間曲
52
線,如圖130(a)所示。根據該曲線可繪制
出鑄件斷面上不同時刻的溫度場 [圖130
(b)]和鑄件的凝固動態(tài)曲線 [圖131(b)]。
鑄件溫度場的繪制方法是:以溫度為縱
坐標,以離開鑄件表面向中心的距離為橫坐
標,將圖130(a)中同一時刻各測溫點的溫
度值分別標注在圖130(b)的相應點上,連
接各標注點即得到該時刻的溫度場。以此類
推,則可繪制出各時刻鑄件斷面上的溫度場。
圖131(b)左邊的曲線與鑄件斷面上各時刻的液相等溫線相對應,稱為 “液相邊界”,
右邊的曲線與固相等溫線相對應,稱為 “固相邊界”。從圖131(b)可以看出,時間為2min
時,距鑄件表面x/R=06處合金開始凝固,由該處至鑄件中心的合金仍為液態(tài) (液相區(qū));
x/R=02處合金剛剛凝固完了,從該處至鑄件表面的合金為固態(tài) (固相區(qū)),二者之間是
液固兩相區(qū) (凝固區(qū))。到32min時,液相區(qū)消失。經過53min,鑄件壁凝固完畢。所
以,圖131(b)的兩條曲線是表示鑄件斷面上液相和固相等溫線由表面向中心推移的動態(tài)
曲線?!耙合嗑€”邊界從鑄件表面向中心移動,所到之處凝固就開始;
減小鑄型中氣體反壓力的途徑有兩條。一條是適當低型砂中的含水量和發(fā)氣物質的含量,亦即減小
砂型的發(fā)氣性;另一條途徑是提高砂型的透氣性,在砂型上扎通氣孔,或在離澆注端最遠或高部位設通
氣冒口,增加砂型的排氣能力。
3澆注條件方面的因素
(1)澆注溫度 澆注溫度對液態(tài)金屬的充型能力
有決定性的影響。澆注溫度越高,充型能力越好。在
一定溫度范圍內,充型能力隨澆注溫度的提高而直線
上升。超過某界限后,由于金屬吸氣多,氧化嚴重,充型能力的提高幅度越來越小。對于薄
壁鑄件或流動性差的合金,利用提高澆注溫度改善充型能力的措施,在生產中經常采用,也
比較方便。但是,隨著澆注溫度的提高,鑄件一次結晶組織粗大,容易產生縮孔、縮松、粘
砂、裂紋等缺陷,因此必須綜合考慮,謹慎使用。